论文标题
部分可观测时空混沌系统的无模型预测
An Efficient HPR Algorithm for the Wasserstein Barycenter Problem with $O({Dim(P)}/\varepsilon)$ Computational Complexity
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this paper, we propose and analyze an efficient Halpern-Peaceman-Rachford (HPR) algorithm for solving the Wasserstein barycenter problem (WBP) with fixed supports. While the Peaceman-Rachford (PR) splitting method itself may not be convergent for solving the WBP, the HPR algorithm can achieve an $O(1/\varepsilon)$ non-ergodic iteration complexity with respect to the Karush-Kuhn-Tucker (KKT) residual. More interestingly, we propose an efficient procedure with linear time computational complexity to solve the linear systems involved in the subproblems of the HPR algorithm. As a consequence, the HPR algorithm enjoys an $O({\rm Dim(P)}/\varepsilon)$ non-ergodic computational complexity in terms of flops for obtaining an $\varepsilon$-optimal solution measured by the KKT residual for the WBP, where ${\rm Dim(P)}$ is the dimension of the variable of the WBP. This is better than the best-known complexity bound for the WBP. Moreover, the extensive numerical results on both the synthetic and real data sets demonstrate the superior performance of the HPR algorithm for solving the large-scale WBP.