论文标题

部分可观测时空混沌系统的无模型预测

SuNeRF: Validation of a 3D Global Reconstruction of the Solar Corona Using Simulated EUV Images

论文作者

Bintsi, Kyriaki-Margarita, Jarolim, Robert, Tremblay, Benoit, Santos, Miraflor, Jungbluth, Anna, Mason, James Paul, Sundaresan, Sairam, Vourlidas, Angelos, Downs, Cooper, Caplan, Ronald M., Jaramillo, Andrés Muñoz

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Extreme Ultraviolet (EUV) light emitted by the Sun impacts satellite operations and communications and affects the habitability of planets. Currently, EUV-observing instruments are constrained to viewing the Sun from its equator (i.e., ecliptic), limiting our ability to forecast EUV emission for other viewpoints (e.g. solar poles), and to generalize our knowledge of the Sun-Earth system to other host stars. In this work, we adapt Neural Radiance Fields (NeRFs) to the physical properties of the Sun and demonstrate that non-ecliptic viewpoints could be reconstructed from observations limited to the solar ecliptic. To validate our approach, we train on simulations of solar EUV emission that provide a ground truth for all viewpoints. Our model accurately reconstructs the simulated 3D structure of the Sun, achieving a peak signal-to-noise ratio of 43.3 dB and a mean absolute relative error of 0.3\% for non-ecliptic viewpoints. Our method provides a consistent 3D reconstruction of the Sun from a limited number of viewpoints, thus highlighting the potential to create a virtual instrument for satellite observations of the Sun. Its extension to real observations will provide the missing link to compare the Sun to other stars and to improve space-weather forecasting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源