论文标题

部分可观测时空混沌系统的无模型预测

Universal singularities of anomalous diffusion in the Richardson class

论文作者

Stella, Attilio L., Chechkin, Aleksei, Teza, Gianluca

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Inhomogeneous environments are rather ubiquitous in nature, often implying anomalies resulting in deviation from Gaussianity of diffusion processes. While sub- and superdiffusion are usually due to conversing environmental features (hindering or favoring the motion, respectively), they are both observed in systems ranging from the micro- to the cosmological scale. Here we show how a model encompassing sub- and superdiffusion in an inhomogeneous environment exhibits a critical singularity in the normalized generator of the cumulants. The singularity originates directly from the asymptotics of the non-Gaussian scaling function of displacement, which we prove to be independent of other details and hence to retain a universal character. Our analysis, based on the method first applied in [A. L. Stella et al., arXiv:2209.02042 (2022)], further allows to establish a relation between the asympototics and diffusion exponents characteristic of processes in the Richardson class. Extensive numerical tests fully confirm the results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源