论文标题

部分可观测时空混沌系统的无模型预测

The on-shell expansion: from Landau equations to the Newton polytope

论文作者

Gardi, Einan, Herzog, Franz, Jones, Stephen, Ma, Yao, Schlenk, Johannes

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We study the application of the method of regions to Feynman integrals with massless propagators contributing to off-shell Green's functions in Minkowski spacetime (with non-exceptional momenta) around vanishing external masses, $p_i^2\to 0$. This on-shell expansion allows us to identify all infrared-sensitive regions at any power, in terms of infrared subgraphs in which a subset of the propagators become collinear to external lightlike momenta and others become soft. We show that each such region can be viewed as a solution to the Landau equations, or equivalently, as a facet in the Newton polytope constructed from the Symanzik graph polynomials. This identification allows us to study the properties of the graph polynomials associated with infrared regions, as well as to construct a graph-finding algorithm for the on-shell expansion, which identifies all regions using exclusively graph-theoretical conditions. We also use the results to investigate the analytic structure of integrals associated with regions in which every connected soft subgraph connects to just two jets. For such regions we prove that multiple on-shell expansions commute. This applies in particular to all regions in Sudakov form-factor diagrams as well as in any planar diagram.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源