论文标题
部分可观测时空混沌系统的无模型预测
Practical quantum simulation of small-scale non-Hermitian dynamics
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Non-Hermitian quantum systems have recently attracted considerable attention due to their exotic properties. Though many experimental realizations of non-Hermitian systems have been reported, the non-Hermiticity usually resorts to the hard-to-control environments and cannot last for too long times. An alternative approach is to use quantum simulation with the closed system, whereas how to simulate non-Hermitian Hamiltonian dynamics remains a great challenge. To tackle this problem, we propose a protocol which combines a dilation method with the variational quantum algorithm. The dilation method is used to transform a non-Hermitian Hamiltonian into a Hermitian one through an exquisite quantum circuit, while the variational quantum algorithm is for efficiently approximating the complex entangled gates in this circuit. As a demonstration, we apply our protocol to simulate the dynamics of an Ising chain with nonlocal non-Hermitian perturbations, which is an important model to study quantum phase transition at nonzero temperatures. The numerical simulation results are highly consistent with the theoretical predictions, revealing the effectiveness of our protocol. The presented protocol paves the way for practically simulating small-scale non-Hermitian dynamics.