论文标题
部分可观测时空混沌系统的无模型预测
Performance Analysis of Free-Space Information Sharing in Full-Duplex Semantic Communications
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In next-generation Internet services, such as Metaverse, the mixed reality (MR) technique plays a vital role. Yet the limited computing capacity of the user-side MR headset-mounted device (HMD) prevents its further application, especially in scenarios that require a lot of computation. One way out of this dilemma is to design an efficient information sharing scheme among users to replace the heavy and repetitive computation. In this paper, we propose a free-space information sharing mechanism based on full-duplex device-to-device (D2D) semantic communications. Specifically, the view images of MR users in the same real-world scenario may be analogous. Therefore, when one user (i.e., a device) completes some computation tasks, the user can send his own calculation results and the semantic features extracted from the user's own view image to nearby users (i.e., other devices). On this basis, other users can use the received semantic features to obtain the spatial matching of the computational results under their own view images without repeating the computation. Using generalized small-scale fading models, we analyze the key performance indicators of full-duplex D2D communications, including channel capacity and bit error probability, which directly affect the transmission of semantic information. Finally, the numerical analysis experiment proves the effectiveness of our proposed methods.