论文标题

跨域显微镜细胞通过分解转移学习计数

Cross-domain Microscopy Cell Counting by Disentangled Transfer Learning

论文作者

Wang, Zuhui

论文摘要

来自不同成像条件,器官和组织的显微镜图像通常具有许多背景范围的各种形状的细胞。结果,设计一个深度学习模型以计算源域中的单元格时,将它们转移到新的目标域时会变得不稳定。为了解决这个问题,当培训不同领域的基于深度学习的细胞计数模型时,手动注释成本通常是规范。在本文中,我们提出了一种跨域细胞计数方法,只需要弱的人类注释努力。最初,我们实现了一个单元格计数网络,该网络将特定于域的知识与单元格图像中的域 - 不合理知识相关联,它们分别与域样式图像和单元密度图的创建有关。然后,我们设计了一种图像合成技术,能够产生建立在一些被标记的目标域图像上的大量合成图像。最后,我们使用一个由合成细胞组成的公共数据集作为源域(不存在手动注释成本)来训练我们的细胞计数网络。随后,我们仅将域 - 不合命斯液知识传输到真实细胞图像的新目标域。通过使用合成的目标域图像和几个实际注释的模型逐步完善训练的模型,我们提出的跨域细胞计数方法与依赖于目标域中完全注释的训练图像的最新技术相比,实现了良好的性能。我们评估了我们的跨域方法对实际显微镜细胞的两个目标域数据集的疗效,这表明只需要在新域中的几个图像上进行注释的可行性。

Microscopy images from different imaging conditions, organs, and tissues often have numerous cells with various shapes on a range of backgrounds. As a result, designing a deep learning model to count cells in a source domain becomes precarious when transferring them to a new target domain. To address this issue, manual annotation costs are typically the norm when training deep learning-based cell counting models across different domains. In this paper, we propose a cross-domain cell counting approach that requires only weak human annotation efforts. Initially, we implement a cell counting network that disentangles domain-specific knowledge from domain-agnostic knowledge in cell images, where they pertain to the creation of domain style images and cell density maps, respectively. We then devise an image synthesis technique capable of generating massive synthetic images founded on a few target-domain images that have been labeled. Finally, we use a public dataset consisting of synthetic cells as the source domain, where no manual annotation cost is present, to train our cell counting network; subsequently, we transfer only the domain-agnostic knowledge to a new target domain of real cell images. By progressively refining the trained model using synthesized target-domain images and several real annotated ones, our proposed cross-domain cell counting method achieves good performance compared to state-of-the-art techniques that rely on fully annotated training images in the target domain. We evaluated the efficacy of our cross-domain approach on two target domain datasets of actual microscopy cells, demonstrating the feasibility of requiring annotations on only a few images in a new domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源