论文标题

与刚性nilpotent轨道相关的无多种原始理想的数量

The number of multiplicity-free primitive ideals associated with the rigid nilpotent orbits

论文作者

Premet, Alexander, Stewart, David

论文摘要

在本文中,我们描述了与有限维的简单谎言代数中与刚性nilpotent轨道相关的无多种原始理想的数量。多亏了较早获得的结果,我们需要解决两个最大的刚性nilpotent轨道的问题,该轨道是$ {\ rm e} _8 $类型的代数。作为推论,我们计算了相应减少的包络代数中的小模块的数量,该代数封闭的特征$ p> 5 $。

In this paper we describe the number of multiplicity-free primitive ideals associated with the rigid nilpotent orbits in finite-dimensional simple Lie algebras. Thanks to the results obtained earlier we need to solve the problem for the two largest rigid nilpotent orbits in Lie algebras of type ${\rm E}_8$. As a corollary we compute the number of small modules in the corresponding reduced enveloping algebras over algebraically closed fields of characteristic $p>5$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源