论文标题
您指的是谁?图像叙述中的核心分辨率
Who are you referring to? Coreference resolution in image narrations
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Coreference resolution aims to identify words and phrases which refer to same entity in a text, a core task in natural language processing. In this paper, we extend this task to resolving coreferences in long-form narrations of visual scenes. First we introduce a new dataset with annotated coreference chains and their bounding boxes, as most existing image-text datasets only contain short sentences without coreferring expressions or labeled chains. We propose a new technique that learns to identify coreference chains using weak supervision, only from image-text pairs and a regularization using prior linguistic knowledge. Our model yields large performance gains over several strong baselines in resolving coreferences. We also show that coreference resolution helps improving grounding narratives in images.