论文标题

奖励联邦众包

Incentive-boosted Federated Crowdsourcing

论文作者

Kang, Xiangping, Yu, Guoxian, Wang, Jun, Guo, Wei, Domeniconi, Carlotta, Zhang, Jinglin

论文摘要

众包是通过利用人类智能来处理计算机硬任务的有利计算范式。但是,通用众包系统可能通过共享工人数据而导致隐私裂口。为了解决这个问题,我们提出了一种新颖的方法,称为Ifedcrowd(增强了奖励联邦众包),以管理众包项目的隐私和质量。 IFEDCORD允许参与者在本地处理敏感数据,并且仅上传加密的培训模型,然后汇总模型参数以构建共享服务器模型以保护数据隐私。为了激励工人以功效的方式建立高质量的全球模型,我们引入了一种激励机制,该机制鼓励工人不断收集新的数据以培训准确的客户模型并增强全球模型培训。我们将众包平台与参与工人之间的基于激励的互动建模为Stackelberg游戏,在这种游戏中,双方都可以最大限度地利用自己的利润。我们得出了游戏的NASH均衡,以找到两侧的最佳解决方案。实验结果证实,Ifedcrowd可以以高质量和效率来完成安全的众包项目。

Crowdsourcing is a favorable computing paradigm for processing computer-hard tasks by harnessing human intelligence. However, generic crowdsourcing systems may lead to privacy-leakage through the sharing of worker data. To tackle this problem, we propose a novel approach, called iFedCrowd (incentive-boosted Federated Crowdsourcing), to manage the privacy and quality of crowdsourcing projects. iFedCrowd allows participants to locally process sensitive data and only upload encrypted training models, and then aggregates the model parameters to build a shared server model to protect data privacy. To motivate workers to build a high-quality global model in an efficacy way, we introduce an incentive mechanism that encourages workers to constantly collect fresh data to train accurate client models and boosts the global model training. We model the incentive-based interaction between the crowdsourcing platform and participating workers as a Stackelberg game, in which each side maximizes its own profit. We derive the Nash Equilibrium of the game to find the optimal solutions for the two sides. Experimental results confirm that iFedCrowd can complete secure crowdsourcing projects with high quality and efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源