论文标题

使用放射线学对CT图像进行非侵入性肝纤维化筛查

Non-invasive Liver Fibrosis Screening on CT Images using Radiomics

论文作者

Yoo, Jay J., Namdar, Khashayar, Carey, Sean, Fischer, Sandra E., McIntosh, Chris, Khalvati, Farzad, Rogalla, Patrik

论文摘要

目标:开发和评估用于检测肝脏CT肝纤维化的放射线机学习模型。 方法:对于这项回顾性的单中心研究,从感兴趣的区域(ROI)提取了放射线特征(ROI),该区域对同时进行肝活检和CT检查的患者的CT图像提取。对比度,归一化,机器学习模型和特征选择方法的组合是根据其在接收器操作特征曲线(AUC)上随机放置的ROI上的平均测试区域确定的。使用最高AUC的组合和选定的特征用于开发最终的肝纤维化筛查模型。 结果:研究包括101名男性和68名女性患者(平均年龄= 51.2岁$ \ pm $ 14.7 [SD])。当在所有组合中平均AUC时,非对比度增强(NC)CT(AUC,0.6100; 95%CI:0.5897,0.6303)的表现优于对比度增强的CT(AUC,0.5680; 95%CI:0.5471,0.5471,0.5890)。高参数和产生最高AUC的特征的组合是一个逻辑回归模型,具有最大,能量,峰度,偏度和小面积的输入特征,从非对比度增强的NC CT提取的高灰色水平强调,使用gamma校正使用$γ$ = 1.5(auc,0.78333333333; 9521; 9521; 9521; 9521; 9521; 9521; 9521; 9521; 9521; 9521,(0.7821); 0.9091; 95%CI:0.9091,0.9091)。 结论:基于放射线学的机器学习模型允许以合理的精度和高灵敏度对NC CT检测肝纤维化。因此,这些模型可用于非侵入性筛查肝纤维化,这有助于在潜在可治愈的阶段早期检测该疾病。

Objectives: To develop and evaluate a radiomics machine learning model for detecting liver fibrosis on CT of the liver. Methods: For this retrospective, single-centre study, radiomic features were extracted from Regions of Interest (ROIs) on CT images of patients who underwent simultaneous liver biopsy and CT examinations. Combinations of contrast, normalization, machine learning model, and feature selection method were determined based on their mean test Area Under the Receiver Operating Characteristic curve (AUC) on randomly placed ROIs. The combination and selected features with the highest AUC were used to develop a final liver fibrosis screening model. Results: The study included 101 male and 68 female patients (mean age = 51.2 years $\pm$ 14.7 [SD]). When averaging the AUC across all combinations, non-contrast enhanced (NC) CT (AUC, 0.6100; 95% CI: 0.5897, 0.6303) outperformed contrast-enhanced CT (AUC, 0.5680; 95% CI: 0.5471, 0.5890). The combination of hyperparameters and features that yielded the highest AUC was a logistic regression model with inputs features of maximum, energy, kurtosis, skewness, and small area high gray level emphasis extracted from non-contrast enhanced NC CT normalized using Gamma correction with $γ$ = 1.5 (AUC, 0.7833; 95% CI: 0.7821, 0.7845), (sensitivity, 0.9091; 95% CI: 0.9091, 0.9091). Conclusions: Radiomics-based machine learning models allow for the detection of liver fibrosis with reasonable accuracy and high sensitivity on NC CT. Thus, these models can be used to non-invasively screen for liver fibrosis, contributing to earlier detection of the disease at a potentially curable stage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源