论文标题
De Rham复合物具有最佳复杂性的多式求解器
Multigrid solvers for the de Rham complex with optimal complexity in polynomial degree
论文作者
论文摘要
$ l^2 $ de rham复合体的Riesz地图经常以构建快速预审人员的构建,以解决更复杂的问题。在这项工作中,我们介绍了这些riesz地图的高阶有限元离散的多机求解器,其时间和空间复杂性与汇总的操作员应用相同,即在Krylov方法的背景下具有多项式程度的最佳复杂性。我们方法的关键思想是在$ l^2 $ - 和$ h(\ Mathrm {d})$ - 内部产品($ \ Mathrm {d}} \ in \ in \ in \ {\ mathrm {gradrm {gradrm {currm mathrm {curlm {curlm {curlm {curlm {参考六面体。在可分离的情况下,所得的稀疏性可以快速解决Pavarino,Arnold-Falk和Hiptmair空间分解的快速解决方案。在不可分离的情况下,该方法可以应用于构造稀疏的辅助操作员。通过稀疏补丁问题的精确cholesky因素化,应用程序复杂性是最佳的,但设置成本和存储却不是。我们通过更精细的Hiptmair空间分解来克服这一点,并使用不完整的cholesky因素化施加了静态凝结引起的稀疏模式,该模式是否适用于求解器是否使用静态凝结。这会产生多个时间和空间复杂性的多族松弛,这在多项式程度上都是最佳的。
The Riesz maps of the $L^2$ de Rham complex frequently arise as subproblems in the construction of fast preconditioners for more complicated problems. In this work we present multigrid solvers for high-order finite element discretizations of these Riesz maps with the same time and space complexity as sum-factorized operator application, i.e.~with optimal complexity in polynomial degree in the context of Krylov methods. The key idea of our approach is to build new finite elements for each space in the de Rham complex with orthogonality properties in both the $L^2$- and $H(\mathrm{d})$-inner products ($\mathrm{d} \in \{\mathrm{grad}, \mathrm{curl}, \mathrm{div}\})$ on the reference hexahedron. The resulting sparsity enables the fast solution of the patch problems arising in the Pavarino, Arnold--Falk--Winther and Hiptmair space decompositions, in the separable case. In the non-separable case, the method can be applied to an auxiliary operator that is sparse by construction. With exact Cholesky factorizations of the sparse patch problems, the application complexity is optimal but the setup costs and storage are not. We overcome this with the finer Hiptmair space decomposition and the use of incomplete Cholesky factorizations imposing the sparsity pattern arising from static condensation, which applies whether static condensation is used for the solver or not. This yields multigrid relaxations with time and space complexity that are both optimal in the polynomial degree.