论文标题

耦合的CP张量分解与多任务fMRI数据融合的共享和不同组件

Coupled CP tensor decomposition with shared and distinct components for multi-task fMRI data fusion

论文作者

Borsoi, Ricardo Augusto, Lehmann, Isabell, Akhonda, Mohammad Abu Baker Siddique, Calhoun, Vince, Usevich, Konstantin, Brie, David, Adali, Tülay

论文摘要

发现在数据集特定特征旁边的多个数据集中共享的组件具有研究功能磁共振成像(fMRI)数据中不同受试者或任务之间的关系的巨大潜力。耦合矩阵和张量分解方法对于灵活的数据融合很有用,或分解可用于以多种方式使用的特征。但是,现有方法不会直接恢复共享和数据集特定的组件,这需要涉及其他超参数选择的后处理步骤。在本文中,我们使用部分约束的规范多核(CP)分解模型提出了一个基于张量的多任务fMRI数据融合的框架。与以前的方法不同,所提出的方法直接恢复共享和数据集特异性组件,从而导致可直接解释的结果。还提出了一种选择高度可重现解决方案分解的策略。我们评估了有关三个任务的实际fMRI数据的拟议方法,并表明所提出的方法找到了有意义的组成部分,这些组件清楚地识别了精神分裂症患者和健康对照患者之间的群体差异。

Discovering components that are shared in multiple datasets, next to dataset-specific features, has great potential for studying the relationships between different subjects or tasks in functional Magnetic Resonance Imaging (fMRI) data. Coupled matrix and tensor factorization approaches have been useful for flexible data fusion, or decomposition to extract features that can be used in multiple ways. However, existing methods do not directly recover shared and dataset-specific components, which requires post-processing steps involving additional hyperparameter selection. In this paper, we propose a tensor-based framework for multi-task fMRI data fusion, using a partially constrained canonical polyadic (CP) decomposition model. Differently from previous approaches, the proposed method directly recovers shared and dataset-specific components, leading to results that are directly interpretable. A strategy to select a highly reproducible solution to the decomposition is also proposed. We evaluate the proposed methodology on real fMRI data of three tasks, and show that the proposed method finds meaningful components that clearly identify group differences between patients with schizophrenia and healthy controls.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源