论文标题

混乱的镜头台球

Chaotic lensed billiards

论文作者

Chumley, Timothy, Covey, Maeve, Cox, Christopher, Feres, Renato

论文摘要

镜头台球是通过添加$ c1 _ {\ Mathcal {a}} $的潜在功能获得的台球动力系统概念的扩展,其中$ c $是一个真实的估值常数,$ 1 _ {\ nathcal {a}} $是一个开放式$ \ nire $ \ nire $ \ nire $ \ nire $ \ nir cland uliie uliie $ \ nir plans $ \ mathcal {a and and canc a and and。 $ \ Mathcal {a} $和表格)是分段光滑的。轨迹是多边形线,在$ \ Mathcal {a} $的边界处进行反射或折射,具体取决于入射角。在提出了一些基本概念和一般事实之后,特别是审查了激发这些台球模型的光学/机械类比,我们探讨了它们的动态属性如何使用许多示例家族来依赖于潜在参数$ c $。特别是,我们以数字探索这些参数家族的Lyapunov指数,并突出显示了将它们与标准台球系统区分开的更显着的共同属性。我们通过在两个开放式(标准)台球子系统之间切换动力学并获得与每个子系统中的轨道居民相关的平均值来表征镜头台球的某些属性的合理性。

Lensed billiards are an extension of the notion of billiard dynamical systems obtained by adding a potential function of the form $C1_{\mathcal{A}}$, where $C$ is a real valued constant and $1_{\mathcal{A}}$ is the indicator function of an open subset $\mathcal{A}$ of the billiard table whose boundaries (of $\mathcal{A}$ and the table) are piecewise smooth. Trajectories are polygonal lines that undergo either reflection or refraction at the boundary of $\mathcal{A}$ depending on the angle of incidence. After laying out some basic concepts and general facts, in particular reviewing the optical/mechanical analogy that motivates these billiard models, we explore how their dynamical properties depend on the potential parameter $C$ using a number of families of examples. In particular, we explore numerically the Lyapunov exponents for these parametric families and highlight the more salient common properties that distinguish them from standard billiard systems. We further justify some of these properties by characterizing lensed billiards in terms of switching dynamics between two open (standard) billiard subsystems and obtaining mean values associated to orbit sojourn in each subsystem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源