论文标题
约旦产品和分析核心保留者
Jordan product and analytic core preservers
论文作者
论文摘要
令$ \ Mathcal {b}(x)$为无限二维复合体Banach Space上的所有有界线性操作员的代数$ x $。对于\ Mathcal {B}(x)$,$ k(t)$表示$ t $ to的运算符$ t \ $ t $ t $的分析核心。我们确定$ \ Mathcal {b}(x)$满足$$ k(ϕ(t)ϕ(s) + ϕ(s) + ϕ(s)ϕ(t))= k(ts + st)$$的$ \ mathcal {b}(x)$上的溢流映射$ ϕ $的形式的形式。
Let $\mathcal{B} (X)$ be the algebra of all bounded linear operators on an infinite-dimensional complex Banach space $X$. For an operator $ T \in \mathcal{B} (X)$, $K(T)$ denotes as usual the analytic core of $T$. We determine the form of surjective maps $ ϕ$ on $ \mathcal{B} (X)$ satisfying $$ K(ϕ(T) ϕ(S) + ϕ(S) ϕ(T)) = K(TS + ST) $$ for all $T, S \in \mathcal{B} (X)$.