论文标题

通过区域gan倒置的细粒面部交换

Fine-Grained Face Swapping via Regional GAN Inversion

论文作者

Liu, Zhian, Li, Maomao, Zhang, Yong, Wang, Cairong, Zhang, Qi, Wang, Jue, Nie, Yongwei

论文摘要

我们为高保真面孔交换提供了一种新颖的范式,忠实地保留了所需的微妙几何形状和纹理细节。我们从细粒面部编辑的角度重新考虑面对面交换,\ textit {i.e。,``交换''(e4s)},并提出了一个基于面部成分形状和纹理的明确散布的框架。遵循E4S原则,我们的框架可以实现面部特征的全局和本地交换,并控制用户指定的部分交换量。此外,E4S范式本质上能够通过面膜来处理面部遮挡。我们系统的核心是一种新型的区域gan倒置(RGI)方法,它允许对形状和纹理的显式解开。它还允许在StyleGan的潜在空间中进行面部交换。具体而言,我们设计了一个多尺度的掩模指导编码器,以将每个面部组件的质地投影到区域样式代码中。我们还设计了一个面具引导的注入模块,以使用样式代码来操纵特征图。基于分离,面部交换是简化的样式和面具交换的问题。广泛的实验和与当前最新方法的比较证明了我们在保留纹理和形状细节以及使用高分辨率图像的方法方面的优越性。项目页面是http://e4s2022.github.io

We present a novel paradigm for high-fidelity face swapping that faithfully preserves the desired subtle geometry and texture details. We rethink face swapping from the perspective of fine-grained face editing, \textit{i.e., ``editing for swapping'' (E4S)}, and propose a framework that is based on the explicit disentanglement of the shape and texture of facial components. Following the E4S principle, our framework enables both global and local swapping of facial features, as well as controlling the amount of partial swapping specified by the user. Furthermore, the E4S paradigm is inherently capable of handling facial occlusions by means of facial masks. At the core of our system lies a novel Regional GAN Inversion (RGI) method, which allows the explicit disentanglement of shape and texture. It also allows face swapping to be performed in the latent space of StyleGAN. Specifically, we design a multi-scale mask-guided encoder to project the texture of each facial component into regional style codes. We also design a mask-guided injection module to manipulate the feature maps with the style codes. Based on the disentanglement, face swapping is reformulated as a simplified problem of style and mask swapping. Extensive experiments and comparisons with current state-of-the-art methods demonstrate the superiority of our approach in preserving texture and shape details, as well as working with high resolution images. The project page is http://e4s2022.github.io

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源