论文标题
WSSL:加权自我监督的学习框架,用于侵蚀图像
WSSL: Weighted Self-supervised Learning Framework For Image-inpainting
论文作者
论文摘要
图像介入是将图像中丢失部分再生的过程。基于监督算法的方法表现出了出色的结果,但具有两个重要的缺点。使用看不见的数据测试时,它们的表现不佳。他们无法捕获图像的全局上下文,从而产生了视觉上不吸引人的结果。我们提出了一个新颖的自我监督学习框架,以侵蚀图像:加权自学学习(WSSL)来解决这些问题。我们设计了WSSL,以从多个加权借口任务中学习功能。然后将这些功能用于下游任务,即图像启动。为了提高框架的性能并产生更具视觉吸引力的图像,我们还为图像插入图像提供了新的损失功能。损失函数利用重建损失和感知损失函数来再生图像。我们的实验表明WSSL的表现优于先前的方法,我们的损失函数有助于产生更好的结果。
Image inpainting is the process of regenerating lost parts of the image. Supervised algorithm-based methods have shown excellent results but have two significant drawbacks. They do not perform well when tested with unseen data. They fail to capture the global context of the image, resulting in a visually unappealing result. We propose a novel self-supervised learning framework for image-inpainting: Weighted Self-Supervised Learning (WSSL) to tackle these problems. We designed WSSL to learn features from multiple weighted pretext tasks. These features are then utilized for the downstream task, image-inpainting. To improve the performance of our framework and produce more visually appealing images, we also present a novel loss function for image inpainting. The loss function takes advantage of both reconstruction loss and perceptual loss functions to regenerate the image. Our experimentation shows WSSL outperforms previous methods, and our loss function helps produce better results.