论文标题

学习增强的非线性模型预测性控制使用基于知识的神经普通微分方程和深层合奏

Learning-enhanced Nonlinear Model Predictive Control using Knowledge-based Neural Ordinary Differential Equations and Deep Ensembles

论文作者

Chee, Kong Yao, Hsieh, M. Ani, Matni, Nikolai

论文摘要

非线性模型预测控制(MPC)是一种灵活且日益流行的框架,用于合成可以满足状态和控制输入约束的反馈控制策略。在此框架中,在每个时间步骤都解决了以非线性动力学模型为特征的一组动力学约束的优化问题。尽管具有多功能性,但非线性MPC的性能通常取决于动力学模型的准确性。在这项工作中,我们利用深度学习工具,即基于知识的神经普通微分方程(KNODE)和深层合奏,以提高该模型的预测准确性。特别是,我们学习了一个Knode模型的集合,我们将其称为Knode Ensemble,以获得真实系统动力学的准确预测。然后将这个学到的模型集成到一种新型学习增强的非线性MPC框架中。我们提供足够的条件,可以保证闭环系统的渐近稳定性,并表明这些条件可以在实践中实施。我们表明,KNODE集合提供了更准确的预测,并使用两个案例研究说明了所提出的非线性MPC框架的功效和闭环性能。

Nonlinear model predictive control (MPC) is a flexible and increasingly popular framework used to synthesize feedback control strategies that can satisfy both state and control input constraints. In this framework, an optimization problem, subjected to a set of dynamics constraints characterized by a nonlinear dynamics model, is solved at each time step. Despite its versatility, the performance of nonlinear MPC often depends on the accuracy of the dynamics model. In this work, we leverage deep learning tools, namely knowledge-based neural ordinary differential equations (KNODE) and deep ensembles, to improve the prediction accuracy of this model. In particular, we learn an ensemble of KNODE models, which we refer to as the KNODE ensemble, to obtain an accurate prediction of the true system dynamics. This learned model is then integrated into a novel learning-enhanced nonlinear MPC framework. We provide sufficient conditions that guarantees asymptotic stability of the closed-loop system and show that these conditions can be implemented in practice. We show that the KNODE ensemble provides more accurate predictions and illustrate the efficacy and closed-loop performance of the proposed nonlinear MPC framework using two case studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源