论文标题

复杂旋转:失踪零和牛顿的黑魔法

Complex Spin: The Missing Zeroes and Newton's Dark Magic

论文作者

Homrich, Alexandre, Simmons-Duffin, David, Vieira, Pedro

论文摘要

共形regge理论预测了复杂自旋的分析持续CFT数据的存在。当与小型旋转相比,有更多具有大型旋转的操作员有更多的运算符时,这该怎么办?使用平面n = 4 Sym作为测试地,我们找到了一个简单的物理图片。操作员确实将自己组织到分析家庭中,但是较高家庭的延续在其结构中为较低整数旋转的OPE常数为零。因此,他们将其脱钩。牛顿的插值系列技术非常适合这个物理问题,将使我们能够探索正确的复杂自旋半平面。

Conformal Regge theory predicts the existence of analytically continued CFT data for complex spin. How could this work when there are so many more operators with large spin compared to small spin? Using planar N=4 SYM as a testground we find a simple physical picture. Operators do organize themselves into analytic families but the continuation of the higher families have zeroes in their structure OPE constants for lower integer spins. They thus decouple. Newton's interpolation series technique is perfectly suited to this physical problem and will allow us to explore the right complex spin half-plane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源