论文标题

光学中的MIMO通信与频道分配不平等的电源

Optical MIMO communication with unequal power allocation to channels

论文作者

Laha, Aritra, Kumar, Santosh

论文摘要

光纤通信中的多个输入多重输出(MIMO)方法已成为解决不断增长的信息交换需求的有效主张。在沿阵行的情况下,多个与多种模式或核心或光纤中的多个通道由随机矩阵的雅各比集合建模。评估MIMO系统性能的关键数量是共同信息(MI)。我们将重点放在任意传输协方差矩阵的情况下,并得出相互信息(MI)的矩生成函数(MGF)的精确决定因素结果,从而解决了每个激发模式的不平等功率的场景。 MGF用于获得基于概率密度函数(PDF),累积分布函数(CDF)的高斯和Weibull-Distribution的近似值,或者同等地(同等)中断概率,以及生存函数(SF)或可靠性函数。此外,实现了数值傅立叶反转方法,以直接从MGF获得PDF,CDF和SF。 MGF进一步用于调查颈候能力,这是相互信息的第一刻(平均)。发现分析结果与蒙特卡洛模拟非常吻合。我们的研究超出了较早的研究,在这些研究中,已经考虑了与身份矩阵成比例的协方差矩阵,这对应于每个激发模式相等的功率分配。

Multiple input multiple output (MIMO) approach in fiber optical communication has emerged as an effective proposition to address the ever increasing demand for information exchange. In the ergodic case, the multiple channels, associated with multiple modes or cores or both in the optical fiber, is modeled by the Jacobi ensemble of random matrices. A key quantity for assessing the performance of MIMO systems is the mutual information (MI). We focus here on the case of an arbitrary transmission covariance matrix and derive exact determinant based results for the moment generating function (MGF) of mutual information (MI), and thereby address the scenario of unequal power per excited mode. The MGF is used to obtain Gaussian- and Weibull-distribution based approximations for the probability density function (PDF), cumulative distribution function (CDF) or, equivalently, the outage probability, and also the survival function (SF) or reliability function. Moreover, a numerical Fourier inversion approach is implemented to obtain the PDF, CDF, and SF directly from the MGF. The MGF is further used to investigate the ergodic capacity, which is the first moment (mean) of the mutual information. The analytical results are found to be in excellent agreement with Monte Carlo simulations. Our study goes beyond the earlier investigations where covariance matrix proportional to identity matrix has been considered which corresponds to equal power allocation per excited mode.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源