论文标题
沉浸式神经图形原始图
Immersive Neural Graphics Primitives
论文作者
论文摘要
神经辐射场(NERF),特别是通过即时神经图形原始图的扩展,是一种新型的渲染方法,用于查看合成,它使用现实世界图像来构建照片真实的沉浸式虚拟场景。尽管具有潜力,但对NERF和虚拟现实(VR)组合的研究仍然很少。当前,尚未集成到典型的VR系统中,并且尚未对VR的NERF实现的性能和适用性进行评估,例如,对于不同的场景复杂性或屏幕分辨率。在本文中,我们介绍并评估了一个基于NERF的框架,该框架能够在沉浸式VR中渲染场景,使用户可以自由移动其头以探索复杂的现实世界场景。我们通过基准在不同的场景复杂性和分辨率上进行渲染性能的三个不同的NERF场景来评估我们的框架。利用超分辨率,我们的方法可以产生每秒30帧的帧速率,分辨率为每眼1280x720像素。我们讨论框架的潜在应用,并在线提供开源实施。
Neural radiance field (NeRF), in particular its extension by instant neural graphics primitives, is a novel rendering method for view synthesis that uses real-world images to build photo-realistic immersive virtual scenes. Despite its potential, research on the combination of NeRF and virtual reality (VR) remains sparse. Currently, there is no integration into typical VR systems available, and the performance and suitability of NeRF implementations for VR have not been evaluated, for instance, for different scene complexities or screen resolutions. In this paper, we present and evaluate a NeRF-based framework that is capable of rendering scenes in immersive VR allowing users to freely move their heads to explore complex real-world scenes. We evaluate our framework by benchmarking three different NeRF scenes concerning their rendering performance at different scene complexities and resolutions. Utilizing super-resolution, our approach can yield a frame rate of 30 frames per second with a resolution of 1280x720 pixels per eye. We discuss potential applications of our framework and provide an open source implementation online.