论文标题

自我监督MR图像重建的迭代数据完善

Iterative Data Refinement for Self-Supervised MR Image Reconstruction

论文作者

Liu, Xue, Zou, Juan, Zheng, Xiawu, Li, Cheng, Zheng, Hairong, Wang, Shanshan

论文摘要

磁共振成像(MRI)已成为各种疾病的可视化,检测和诊断的诊所中的重要技术。但是,MRI的一个瓶颈限制是数据采集过程相对较慢。基于K空间不足采样和高质量图像重建的快速MRI已被广泛使用,并且近年来已经开发了许多基于学习的方法。尽管已经实现了有希望的结果,但大多数现有方法都需要完全采样的参考数据来培训深度学习模型。不幸的是,在现实世界应用中很难获得完全采样的MRI数据。为了解决这个问题,我们为自我监督的MR图像重建提供了一个数据完善框架。具体而言,我们首先分析了自我监督和监督方法之间绩效差距的原因,并确定两者之间的训练数据集中的偏见是一个主要因素。然后,我们设计了一种有效的自我监督培训数据完善方法来减少此数据偏见。通过数据的完善,开发了增强的自我监管的MR图像重建框架,以促使MR成像准确。我们在体内MRI数据集上评估我们的方法。实验结果表明,如果不利用任何完全采样的MRI数据,我们的自我监管框架在捕获高加速度因子的图像细节和结构方面具有很强的能力。

Magnetic Resonance Imaging (MRI) has become an important technique in the clinic for the visualization, detection, and diagnosis of various diseases. However, one bottleneck limitation of MRI is the relatively slow data acquisition process. Fast MRI based on k-space undersampling and high-quality image reconstruction has been widely utilized, and many deep learning-based methods have been developed in recent years. Although promising results have been achieved, most existing methods require fully-sampled reference data for training the deep learning models. Unfortunately, fully-sampled MRI data are difficult if not impossible to obtain in real-world applications. To address this issue, we propose a data refinement framework for self-supervised MR image reconstruction. Specifically, we first analyze the reason of the performance gap between self-supervised and supervised methods and identify that the bias in the training datasets between the two is one major factor. Then, we design an effective self-supervised training data refinement method to reduce this data bias. With the data refinement, an enhanced self-supervised MR image reconstruction framework is developed to prompt accurate MR imaging. We evaluate our method on an in-vivo MRI dataset. Experimental results show that without utilizing any fully sampled MRI data, our self-supervised framework possesses strong capabilities in capturing image details and structures at high acceleration factors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源