论文标题

Gelstereo触觉感测的实时标记本地化学习

Real-Time Marker Localization Learning for GelStereo Tactile Sensing

论文作者

Liu, Shujuan, Cui, Shaowei, Zhang, Chaofan, Cai, Yinghao, Wang, Shuo

论文摘要

Visuotactile感应技术在触觉传感中变得越来越流行,但是现有标记检测定位方法的有效性仍有待进一步探讨。本文不是基于轮廓的BLOB检测,而是为Gelstereo Visuotactile Sensing提供了一个基于学习的标记定位网络,称为Marknet。具体而言,Marknet提出了一个网格回归体系结构,以结合Gelstereo标记的分布。此外,对标记合理性评估者(MRE)进行建模以筛选适当的预测结果。实验结果表明,与MRE结合使用的Marknet在接触区域的不规则标记中达到了93.90%的精度,这表现优于传统的基于轮廓的BLOB检测方法,其大幅度为42.32%。同时,提出的基于学习的标记定位方法可以通过GPU加速度提供的OPENCV库提供的BLOB检测界面获得更好的实时性能,我们认为这将导致各种机器人操纵任务中的可感知敏感性提高。

Visuotactile sensing technology is becoming more popular in tactile sensing, but the effectiveness of the existing marker detection localization methods remains to be further explored. Instead of contour-based blob detection, this paper presents a learning-based marker localization network for GelStereo visuotactile sensing called Marknet. Specifically, the Marknet presents a grid regression architecture to incorporate the distribution of the GelStereo markers. Furthermore, a marker rationality evaluator (MRE) is modelled to screen suitable prediction results. The experimental results show that the Marknet combined with MRE achieves 93.90% precision for irregular markers in contact areas, which outperforms the traditional contour-based blob detection method by a large margin of 42.32%. Meanwhile, the proposed learning-based marker localization method can achieve better real-time performance beyond the blob detection interface provided by the OpenCV library through GPU acceleration, which we believe will lead to considerable perceptual sensitivity gains in various robotic manipulation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源