论文标题

通过新颖的检测来改善ML校正的气候模型的预测

Improving the predictions of ML-corrected climate models with novelty detection

论文作者

Sanford, Clayton, Kwa, Anna, Watt-Meyer, Oliver, Clark, Spencer, Brenowitz, Noah, McGibbon, Jeremy, Bretherton, Christopher

论文摘要

尽管以前的作品表明机器学习(ML)可以提高粗网格气候模型的预测准确性,但这些ML-EAGMENT方法比他们所依赖的传统物理模型更容易受到不规则输入的影响。由于ML预测的校正将其反馈到气候模型的基本物理中,因此经ML校正的模型定期从样本数据产生,这可能会导致模型不稳定性和频繁崩溃。这项工作表明,添加半监督的新颖性检测以识别样本外数据并禁用ML校正,从而稳定模拟并急剧提高了预测的质量。我们设计了一个增强的气候模型,它使用一级支持向量机(OCSVM)新颖性检测器,该探测器在为期一年的模拟中提供了更好的温度和降水预测,而不是基线(NO-ML)或标准ML校正的运行。通过提高粗网格气候模型的准确性,这项工作有助于使研究人员可以访问没有大量计算资源的研究人员。

While previous works have shown that machine learning (ML) can improve the prediction accuracy of coarse-grid climate models, these ML-augmented methods are more vulnerable to irregular inputs than the traditional physics-based models they rely on. Because ML-predicted corrections feed back into the climate model's base physics, the ML-corrected model regularly produces out of sample data, which can cause model instability and frequent crashes. This work shows that adding semi-supervised novelty detection to identify out-of-sample data and disable the ML-correction accordingly stabilizes simulations and sharply improves the quality of predictions. We design an augmented climate model with a one-class support vector machine (OCSVM) novelty detector that provides better temperature and precipitation forecasts in a year-long simulation than either a baseline (no-ML) or a standard ML-corrected run. By improving the accuracy of coarse-grid climate models, this work helps make accurate climate models accessible to researchers without massive computational resources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源