论文标题

针对网络法医学调查的原则性数据驱动的决策支持

Principled Data-Driven Decision Support for Cyber-Forensic Investigations

论文作者

Atefi, Soodeh, Panda, Sakshyam, Panaousis, Emmanouil, Laszka, Aron

论文摘要

在发生网络安全事件之后,至关重要的是要迅速发现威胁行为者如何违反安全性,以评估事件的影响并开发和部署可以防止进一步攻击的对策。为此,防守者可以发起网络法医学调查,该调查发现了威胁行为者在事件中使用的技术。这种调查中的一个基本挑战是优先考虑对特定技术的调查,因为对每种技术的调查需要时间和精力,但是法医分析师在研究之前实际上不知道实际使用了哪些。为了确保迅速发现,必须提供决策支持,以帮助法医分析师获得此优先级。最近的一项研究表明,基于先前事件数据集的数据驱动的决策支持可以提供最新的优先级。但是,这种数据驱动的方法(称为Dilesing)是基于一种启发式方法,该方法仅利用可用信息的一部分,并且不近似最佳决策。为了改善这种启发式,我们引入了一种原则性的方法,以进行数据驱动的决策支持,以进行网络法医学研究。我们使用马尔可夫决策过程制定了决策支持问题,该过程代表了法医调查的状态。为了解决决策问题,我们提出了一种基于蒙特卡洛树搜索的方法,该方法依赖于对先前事件的K-NN回归来估计状态转变概率。我们在MITER ATT&CK数据集的多个版本上评估了我们提出的方法,该数据集是基于现实世界中的网络事件的对抗技术和策略的知识库,并证明我们的方法优于所花费的努力的技术披露。

In the wake of a cybersecurity incident, it is crucial to promptly discover how the threat actors breached security in order to assess the impact of the incident and to develop and deploy countermeasures that can protect against further attacks. To this end, defenders can launch a cyber-forensic investigation, which discovers the techniques that the threat actors used in the incident. A fundamental challenge in such an investigation is prioritizing the investigation of particular techniques since the investigation of each technique requires time and effort, but forensic analysts cannot know which ones were actually used before investigating them. To ensure prompt discovery, it is imperative to provide decision support that can help forensic analysts with this prioritization. A recent study demonstrated that data-driven decision support, based on a dataset of prior incidents, can provide state-of-the-art prioritization. However, this data-driven approach, called DISCLOSE, is based on a heuristic that utilizes only a subset of the available information and does not approximate optimal decisions. To improve upon this heuristic, we introduce a principled approach for data-driven decision support for cyber-forensic investigations. We formulate the decision-support problem using a Markov decision process, whose states represent the states of a forensic investigation. To solve the decision problem, we propose a Monte Carlo tree search based method, which relies on a k-NN regression over prior incidents to estimate state-transition probabilities. We evaluate our proposed approach on multiple versions of the MITRE ATT&CK dataset, which is a knowledge base of adversarial techniques and tactics based on real-world cyber incidents, and demonstrate that our approach outperforms DISCLOSE in terms of techniques discovered per effort spent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源