论文标题
学会差异化
Learning to Rasterize Differentiably
论文作者
论文摘要
可差的栅格化改变了原始栅格化的标准公式 - 通过使梯度流从像素到其基础三角形 - 使用分布函数在不同阶段的渲染阶段,创建了原始rasterizer的“软”版本。但是,选择确保最佳性能和收敛到所需目标的最佳软化功能需要试用和错误。先前的工作已经分析并比较了几种软化的组合。在这项工作中,我们将其更进一步,而不是做出软化操作的组合选择,而是将常见软化操作的连续空间参数化。我们研究了一组逆渲染任务(2D和3D形状,姿势和遮挡),因此研究了元学习可调式柔软度功能,因此它可以概括为具有最佳柔软性的新的和看不见的可区分渲染任务。
Differentiable rasterization changes the standard formulation of primitive rasterization -- by enabling gradient flow from a pixel to its underlying triangles -- using distribution functions in different stages of rendering, creating a "soft" version of the original rasterizer. However, choosing the optimal softening function that ensures the best performance and convergence to a desired goal requires trial and error. Previous work has analyzed and compared several combinations of softening. In this work, we take it a step further and, instead of making a combinatorial choice of softening operations, parameterize the continuous space of common softening operations. We study meta-learning tunable softness functions over a set of inverse rendering tasks (2D and 3D shape, pose and occlusion) so it generalizes to new and unseen differentiable rendering tasks with optimal softness.