论文标题
从随机开放量子系统中的慢速到快速放松的动态过渡
Dynamical transitions from slow to fast relaxation in random open quantum systems
论文作者
论文摘要
我们探索空间位置对受马尔可夫噪声的随机量子系统动力学的影响。为此,我们研究了一个模型,其中Hamiltonian系统及其与噪声的耦合是随机矩阵,其条目作为距离的功率定律,带有不同的指数$α_H,α_l$。稳态状态始终是无与伦比的,但是接近它的速率取决于$α_H$和$α_l$:这种阶段,该方法是由于lindblad超级启动器的差异而渐近指数的阶段,这些阶段是在lindblad超级启动器的范围中的差异而导致的,这些阶段与动力学的范围不同,与非指定性相差的阶段相差异性,均与非指定性相差。在扰动理论中,$(α_H,α_l)$平面中的相位边界在弱和强散开方面有所不同,这表明相变是噪声强度的函数。我们确定了防止热力学极限中这种相变的非扰动效应。
We explore the effects of spatial locality on the dynamics of random quantum systems subject to a Markovian noise. To this end, we study a model in which the system Hamiltonian and its couplings to the noise are random matrices whose entries decay as power laws of distance, with distinct exponents $α_H, α_L$. The steady state is always featureless, but the rate at which it is approached exhibits three phases depending on $α_H$ and $α_L$: a phase where the approach is asymptotically exponential as a result of a gap in the spectrum of the Lindblad superoperator that generates the dynamics, and two gapless phases with subexponential relaxation, distinguished by the manner in which the gap decreases with system size. Within perturbation theory, the phase boundaries in the $(α_H, α_L)$ plane differ for weak and strong dissipation, suggesting phase transitions as a function of noise strength. We identify nonperturbative effects that prevent such phase transitions in the thermodynamic limit.