论文标题

LEMPEL-ZIV网络

Lempel-Ziv Networks

论文作者

Saul, Rebecca, Alam, Mohammad Mahmudul, Hurwitz, John, Raff, Edward, Oates, Tim, Holt, James

论文摘要

序列处理长期以来一直是机器学习研究的中心领域。复发性神经网已经成功地处理了许多任务。但是,当将它们应用于非常长的序列时,它们既无效又昂贵。基于压缩的方法在处理此类序列时已经证明了更强的鲁棒性 - 特别是,将Lempel-Ziv Jaccard距离(LZJD)与K-Nearest最邻居算法配对的方法表现出了涉及恶意软件分类的长序列问题(最多$ t = 200,000,000 $步骤)。不幸的是,LZJD的使用仅限于离散域。为了将LZJD的益处扩展到连续的域,我们研究了算法的深度学习类似物(Lempel-Ziv网络)的有效性。尽管我们获得了成功的概念证明,但我们无法在各种数据集和序列处理任务上具有标准LSTM的性能有意义提高。除了提出这一负面结果外,我们的工作还强调了在新研究领域的基线调整的问题。

Sequence processing has long been a central area of machine learning research. Recurrent neural nets have been successful in processing sequences for a number of tasks; however, they are known to be both ineffective and computationally expensive when applied to very long sequences. Compression-based methods have demonstrated more robustness when processing such sequences -- in particular, an approach pairing the Lempel-Ziv Jaccard Distance (LZJD) with the k-Nearest Neighbor algorithm has shown promise on long sequence problems (up to $T=200,000,000$ steps) involving malware classification. Unfortunately, use of LZJD is limited to discrete domains. To extend the benefits of LZJD to a continuous domain, we investigate the effectiveness of a deep-learning analog of the algorithm, the Lempel-Ziv Network. While we achieve successful proof of concept, we are unable to improve meaningfully on the performance of a standard LSTM across a variety of datasets and sequence processing tasks. In addition to presenting this negative result, our work highlights the problem of sub-par baseline tuning in newer research areas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源