论文标题
rntrajrec:通过时空变压器的道路网络增强轨迹恢复
RNTrajRec: Road Network Enhanced Trajectory Recovery with Spatial-Temporal Transformer
论文作者
论文摘要
GPS轨迹是许多基于轨迹的应用的基础,例如旅行时间估计,交通预测和轨迹相似性测量。大多数应用都需要大量的高样本率轨迹才能实现良好的性能。但是,由于能源问题或其他约束,收集了许多现实生活中的轨迹。我们研究本文中轨迹恢复的任务是增加样品轨迹的样本率的一种手段。当前,大多数现有有关轨迹恢复的作品遵循序列到序列图,并带有编码器来编码轨迹和解码器,以恢复轨迹中的实际GPS点。但是,这些作品忽略了道路网络的拓扑,仅使用网格信息或原始GPS点作为输入。因此,编码器模型无法沿轨迹捕获GPS点的丰富空间信息,从而使预测降低了准确和缺乏空间一致性。在本文中,我们提出了一个道路网络增强的基于变压器的框架,即rntrajrec,以进行轨迹恢复。 Rntrajrec首先使用图形模型,即Gridgnn来学习每个路段的嵌入功能。接下来,它开发了一个时空变压器模型,即GPSFormer,以学习丰富的空间和时间特征以及子图生成模块,以捕获轨迹中每个GPS点的空间特征。最终,它将编码器模型的输出转发到多任务解码器模型中,以恢复缺失的GPS点。基于三个大规模现实生活轨迹数据集的广泛实验证实了我们方法的有效性。
GPS trajectories are the essential foundations for many trajectory-based applications, such as travel time estimation, traffic prediction and trajectory similarity measurement. Most applications require a large amount of high sample rate trajectories to achieve a good performance. However, many real-life trajectories are collected with low sample rate due to energy concern or other constraints.We study the task of trajectory recovery in this paper as a means for increasing the sample rate of low sample trajectories. Currently, most existing works on trajectory recovery follow a sequence-to-sequence diagram, with an encoder to encode a trajectory and a decoder to recover real GPS points in the trajectory. However, these works ignore the topology of road network and only use grid information or raw GPS points as input. Therefore, the encoder model is not able to capture rich spatial information of the GPS points along the trajectory, making the prediction less accurate and lack spatial consistency. In this paper, we propose a road network enhanced transformer-based framework, namely RNTrajRec, for trajectory recovery. RNTrajRec first uses a graph model, namely GridGNN, to learn the embedding features of each road segment. It next develops a spatial-temporal transformer model, namely GPSFormer, to learn rich spatial and temporal features along with a Sub-Graph Generation module to capture the spatial features for each GPS point in the trajectory. It finally forwards the outputs of encoder model into a multi-task decoder model to recover the missing GPS points. Extensive experiments based on three large-scale real-life trajectory datasets confirm the effectiveness of our approach.