论文标题
四面化:3D形成的四面体扩散模型
TetraDiffusion: Tetrahedral Diffusion Models for 3D Shape Generation
论文作者
论文摘要
概率denoisis扩散模型(DDMS)为2D图像生成设定了新的标准。扩展3D内容创建的DDM是一个积极的研究领域。在这里,我们提出了四面化模型,该模型在3D空间的四面体分区上运行,以实现有效的高分辨率3D形状生成。我们的模型介绍了直接在四面体分区作用的卷积和转置卷积的运算符,并且无缝包含其他属性,例如颜色。值得注意的是,四辐射可以以前所未有的分辨率几乎实时对详细的3D对象进行快速采样。它也适用于在2D图像上生成3D形状的3D形状。与现有的3D网格扩散技术相比,我们的方法的推理速度速度快200倍,用于标准消费者硬件并提供较高的结果。
Probabilistic denoising diffusion models (DDMs) have set a new standard for 2D image generation. Extending DDMs for 3D content creation is an active field of research. Here, we propose TetraDiffusion, a diffusion model that operates on a tetrahedral partitioning of 3D space to enable efficient, high-resolution 3D shape generation. Our model introduces operators for convolution and transpose convolution that act directly on the tetrahedral partition, and seamlessly includes additional attributes such as color. Remarkably, TetraDiffusion enables rapid sampling of detailed 3D objects in nearly real-time with unprecedented resolution. It's also adaptable for generating 3D shapes conditioned on 2D images. Compared to existing 3D mesh diffusion techniques, our method is up to 200 times faster in inference speed, works on standard consumer hardware, and delivers superior results.