论文标题
球体上的对数Sobolev和插值不平等:建设性稳定性结果
Logarithmic Sobolev and interpolation inequalities on the sphere: constructive stability results
论文作者
论文摘要
我们认为在庞加莱不平等和索博莱夫的不平等之间插值的球体上的Gagliardo-Nirenberg不平等,并包括对数Sobolev的不平等现象。我们使用光谱分解技术在亚临界方面建立了明确的稳定性,熵和Carrédu冠军方法应用于非线性扩散流。
We consider Gagliardo-Nirenberg inequalities on the sphere which interpolate between the Poincaré inequality and the Sobolev inequality, and include the logarithmic Sobolev inequality as a special case. We establish explicit stability results in the subcritical regime using spectral decomposition techniques, and entropy and carré du champ methods applied to nonlinear diffusion flows.