论文标题

数字双胞胎中心的混合数据驱动的多阶段深度学习框架,以增强核反应堆功率预测

Digital Twin-Centered Hybrid Data-Driven Multi-Stage Deep Learning Framework for Enhanced Nuclear Reactor Power Prediction

论文作者

Daniell, James, Kobayashi, Kazuma, Alajo, Ayodeji, Alam, Syed Bahauddin

论文摘要

核反应堆瞬变的准确有效建模对于确保安全有最佳的反应器运行至关重要。基于物理的传统模型虽然有价值,但在计算上可能是计算中的,并且可能无法完全捕获现实世界反应堆行为的复杂性。本文介绍了一种新型的混合数字数字双阶段的多阶段深度学习框架,该框架解决了这些局限性,为预测反应堆瞬变的最终稳态功率提供了更快,更强大的解决方案。通过利用馈送前向神经网络与分类和回归阶段的结合,以及在独特的数据集中进行培训,该数据集将反应堆功率和控制状态的真实测量结果整合到密苏里州科学与技术反应堆(MSTR)的状态与噪声增强的数据与噪声模拟数据的状态,我们的方法可以实现出色的准确性(96%分类(96%分类),2.3%MAPE,2.3%Mape)。将模拟数据与噪声的结合显着提高了模型的概括能力,从而减轻了过度拟合的风险。该框架设计为数字双支持系统,整合了反应堆状态过渡的实时,同步的预测,从而实现了动态的操作监视和优化。这种创新的解决方案不仅可以快速,准确地预测反应堆行为,而且有可能彻底改变核反应堆操作,促进增强的安全协议,优化的绩效和简化的决策过程。通过将数据驱动的见解与数字双胞胎的原则保持一致,这项工作为核系统管理中适应性和可扩展的解决方案奠定了基础。

The accurate and efficient modeling of nuclear reactor transients is crucial for ensuring safe and optimal reactor operation. Traditional physics-based models, while valuable, can be computationally intensive and may not fully capture the complexities of real-world reactor behavior. This paper introduces a novel hybrid digital twin-focused multi-stage deep learning framework that addresses these limitations, offering a faster and more robust solution for predicting the final steady-state power of reactor transients. By leveraging a combination of feed-forward neural networks with both classification and regression stages, and training on a unique dataset that integrates real-world measurements of reactor power and controls state from the Missouri University of Science and Technology Reactor (MSTR) with noise-enhanced simulated data, our approach achieves remarkable accuracy (96% classification, 2.3% MAPE). The incorporation of simulated data with noise significantly improves the model's generalization capabilities, mitigating the risk of overfitting. Designed as a digital twin supporting system, this framework integrates real-time, synchronized predictions of reactor state transitions, enabling dynamic operational monitoring and optimization. This innovative solution not only enables rapid and precise prediction of reactor behavior but also has the potential to revolutionize nuclear reactor operations, facilitating enhanced safety protocols, optimized performance, and streamlined decision-making processes. By aligning data-driven insights with the principles of digital twins, this work lays the groundwork for adaptable and scalable solutions in nuclear system management.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源