论文标题
引导重力及其扩展到公制的理论
Bootstrapping gravity and its extension to metric-affine theories
论文作者
论文摘要
在这项工作中,我们研究了从Minkowski Spacetime(或其他背景)上的自我相互作用野外理论的角度(或其他背景),从自我相互作用的野外理论的角度来研究重力的差异性公制。我们修改标准度量理论如何将自己的能量量张量融为一体,并在还存在扭转和非赞誉时讨论这些思想的概括。我们通过希尔伯特(Hilbert)和规范(noether)处方回顾了相应电流的计算,强调了两者都引起的潜在歧义。我们还向Vielbein形式主义提供了这种一致的自我耦合程序的扩展,以便可以将费米斯包括在物质领域中。此外,我们还阐明了一些有关先前关于公制理论的自我耦合问题的讨论,包括一般相对论及其较高的衍生概括。我们还建议Lovelock定理与由保守电流定义引起的自举程序中的歧义之间的联系。
In this work we study diffeomorphism-invariant metric-affine theories of gravity from the point of view of self-interacting field theories on top of Minkowski spacetime (or other background). We revise how standard metric theories couple to their own energy-momentum tensor, and discuss the generalization of these ideas when torsion and nonmetricity are also present. We review the computation of the corresponding currents through the Hilbert and canonical (Noether) prescriptions, emphasizing the potential ambiguities arising from both. We also provide the extension of this consistent self-coupling procedure to the vielbein formalism, so that fermions can be included in the matter sector. In addition, we clarify some subtle issues regarding previous discussions on the self-coupling problem for metric theories, both General Relativity and its higher derivative generalizations. We also suggest a connection between Lovelock theorem and the ambiguities in the bootstrapping procedure arising from those in the definition of conserved currents.