论文标题

模型 - 敏锐的随机模型预测控制

Model-agnostic stochastic model predictive control

论文作者

Tripura, Tapas, Chakraborty, Souvik

论文摘要

我们为动力学系统提出了一种模型 - 反应随机预测对照(MASMPC)算法。提出的方法首先发现\ textit {可解释}使用新算法从数据中控制微分方程,并将其与模型预测性控制算法混合。提议的方法的一个显着特征在于它不需要输入测量(外部激发)。而是将未知的激发视为白噪声,并确定了与基础系统相对应的随机微分方程。借助新型的随机微分方程发现框架,提出的方法能够概括。这消除了重复的再培训阶段 - 与其他基于机器的模型不可知控制算法的主要瓶颈。总体而言,提出的MASMPC(a)在测量噪声方面具有鲁棒性,(b)可用于稀疏测量值,(c)可以应对设定点的变化,(d)可与多个控制变量一起使用,并且(e)可以结合死时间。我们在几个基准示例中获得了最先进的结果。最后,我们使用建议的方法来缓解地震载荷下的76层建筑物。

We propose a model-agnostic stochastic predictive control (MASMPC) algorithm for dynamical systems. The proposed approach first discovers \textit{interpretable} governing differential equations from data using a novel algorithm and blends it with a model predictive control algorithm. One salient feature of the proposed approach resides in the fact that it requires no input measurement (external excitation); the unknown excitation is instead treated as white noise, and a stochastic differential equation corresponding to the underlying system is identified. With the novel stochastic differential equation discovery framework, the proposed approach is able to generalize; this eliminates the repeated retraining phase -- a major bottleneck with other machine learning-based model agnostic control algorithms. Overall, the proposed MASMPC (a) is robust against measurement noise, (b) works with sparse measurements, (c) can tackle set-point changes, (d) works with multiple control variables, and (e) can incorporate dead time. We have obtained state-of-the-art results on several benchmark examples. Finally, we use the proposed approach for vibration mitigation of a 76-storey building under seismic loading.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源