论文标题

基于从网络自动机提取的密度时间演变模式的网络分类方法

A Network Classification Method based on Density Time Evolution Patterns Extracted from Network Automata

论文作者

Zielinski, Kallil M. C., Ribas, Lucas C., Machicao, Jeaneth, Bruno, Odemir M.

论文摘要

事实证明,网络建模是许多跨学科领域的有效工具,包括社会,生物,运输和许多其他现实世界复杂的系统。此外,蜂窝自动机(CA)是一种形式主义,在过去几十年中,它是基于本地规则的这些系统的动态时空行为中探索模式的模型。一些研究探讨了细胞自动机的使用来分析网络的动态行为,并将其表示为网络自动机(NA)。最近,NA被证明是网络分类有效的,因为它使用时间进化模式(TEP)进行特征提取。但是,先前研究探索的TEP由二进制值组成,该值不代表所分析的网络的详细信息。因此,在本文中,我们提出了替代信息来源,以用作分类任务的描述符,我们将其表示为密度时间进化模式(D-TEP)和状态密度时间进化模式(SD-TEP)。我们探索每个节点的活着邻居的密度,这是一个连续值,并根据TEP的直方图计算特征向量。我们的结果表明,与五个合成网络数据库和七个现实世界数据库的先前研究相比,相比之下。我们提出的方法不仅展示了网络中模式识别的良好方法,而且还展示了其他类型数据(例如图像)的巨大潜力。

Network modeling has proven to be an efficient tool for many interdisciplinary areas, including social, biological, transport, and many other real world complex systems. In addition, cellular automata (CA) are a formalism that has been studied in the last decades as a model for exploring patterns in the dynamic spatio-temporal behavior of these systems based on local rules. Some studies explore the use of cellular automata to analyze the dynamic behavior of networks, denominating them as network automata (NA). Recently, NA proved to be efficient for network classification, since it uses a time-evolution pattern (TEP) for the feature extraction. However, the TEPs explored by previous studies are composed of binary values, which does not represent detailed information on the network analyzed. Therefore, in this paper, we propose alternate sources of information to use as descriptor for the classification task, which we denominate as density time-evolution pattern (D-TEP) and state density time-evolution pattern (SD-TEP). We explore the density of alive neighbors of each node, which is a continuous value, and compute feature vectors based on histograms of the TEPs. Our results show a significant improvement compared to previous studies at five synthetic network databases and also seven real world databases. Our proposed method demonstrates not only a good approach for pattern recognition in networks, but also shows great potential for other kinds of data, such as images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源