论文标题

异性恋

A birational involution

论文作者

Beri, Pietro, Manivel, Laurent

论文摘要

考虑到一般的K3表面$ S $ a $ 18 $,晶格理论考虑可以预测希尔伯特立方体$ s^{[3]} $的反透明式birational atrational atrational的存在。我们在六维领域的杰出组$ g_2(\ mathbb {r})$的著名及时动作的帮助下,根据$ s $的mukai模型来描述这种情况。我们通过表明这次互动的不确定性基因座与$ \ Mathbb {p}^2 $ -Bundle在第二度的双重K3表面上,与同源射击双重性建立了联系。

Given a general K3 surface $S$ of degree $18$, lattice theoretic considerations allow to predict the existence of an anti-symplectic birational involution of the Hilbert cube $S^{[3]}$. We describe this involution in terms of the Mukai model of $S$, with the help of the famous transitive action of the exceptional group $G_2(\mathbb{R})$ on the six-dimensional sphere. We make a connection with Homological Projective Duality by showing that the indeterminacy locus of the involution is birational to a $\mathbb{P}^2$-bundle over the dual K3 surface of degree two.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源