论文标题
超立方体中循环的极端数字
Extremal numbers for cycles in a hypercube
论文作者
论文摘要
让$ ex(q_n,h)$是超二键$ q_n $的子图$ g $中最大的边缘,因此没有$ g $ iNSOMORPHIC至$ h $的子图。我们表明,对于任何整数$ k \ geq 3 $,$$ ex(q_n,c_ {4k + 2}))= o(n^{\ frac {5} {6} {6} + \ frac {1} {1} {3(2K-2)}}}}}} 2^n)。$$
Let $ex(Q_n, H)$ be the largest number of edges in a subgraph $G$ of a hypercube $Q_n$ such that there is no subgraph of $G$ isomorphic to $H$. We show that for any integer $k\geq 3$, $$ex(Q_n, C_{4k+2})= O(n^{\frac{5}{6} + \frac{1}{3(2k-2)}} 2^n).$$