论文标题
从rosetta/miro观察到的67p的Rosetta/miro观察的真实原理物质的sub-mm/mm光学特性
Sub-mm/mm optical properties of real protoplanetary matter derived from Rosetta/MIRO observations of comet 67P
论文作者
论文摘要
需要光学特性才能正确理解和建模原球门和碎屑盘。通过假设彗星是太阳系中最原始的物体,我们的目标是得出真实的原始材料的光学常数。我们通过拟合微波仪器(Rosetta Orbiter(Miro)的微波仪器(Mirofave仪器)对合成模型的近距离散发的尺寸近距离材料的近面材料的复杂指标,以拟合了微波仪器(Miro)的光仪器(Miroy)和辐射辐射。根据彗星的两个主要地层场景,我们将地下层建模为卵石以及均匀包装的灰尘晶粒。在具有均匀尘土的表面材料的情况下,我们找到了一种解决方案,可用于$α\约0.22〜 \ Mathrm {cm^{ - 1}} $ 1.594毫米的波长为1.594 mm和$ a \ geq 3.84〜 \ allm {cmmathrm {cm^for a a a a a} $ and and and的波长。 $ 0.006〜 \ MATHRM {WM^{ - 1} k^{ - 1}} $的导热率。对于卵石场景,我们找到了卵石和1.594毫米的波长,复杂的折射率为$ n =(1.074-1.256) + \ mathrm {i} \,(2.580-7.431)\ cdot 10^{ - 3} $ for pebble radii of pebble radii和6mmm和6mmM和6 m m m m c。考虑到其他约束,我们的结果表明,圆锥形地下表面的卵石构成3 mm至6 mm之间的卵石半径。折射率的衍生实际部分用于约束卵石的组成及其体积填充因子。光学和物理特性在原球门和碎片盘观察的背景下进行了讨论。
Optical properties are required for the correct understanding and modelling of protoplanetary and debris discs. By assuming that comets are the most pristine bodies in the solar system, our goal is to derive optical constants of real protoplanetary material. We determine the complex index of refraction of the near-surface material of comet 67P/Churyumov-Gerasimenko by fitting the sub-millimetre/millimetre observations of the thermal emission of the comet's sub-surface made by the Microwave Instrument for the Rosetta Orbiter (MIRO) with synthetic temperatures derived from a thermophysical model and radiative-transfer models. According to the two major formation scenarios of comets, we model the sub-surface layers to consist of pebbles as well as of homogeneously packed dust grains. In the case of a homogeneous dusty surface material, we find a solution for the length-absorption coefficient of $α\approx 0.22~\mathrm{cm^{-1}}$ for a wavelength of 1.594 mm and $α\geq 3.84~\mathrm{cm^{-1}}$ for a wavelength of 0.533 mm and a constant thermal conductivity of $0.006~\mathrm{Wm^{-1}K^{-1}}$. For the pebble scenario, we find for the pebbles and a wavelength of 1.594 mm a complex refractive index of $n = (1.074 - 1.256) + \mathrm{i} \, (2.580 - 7.431)\cdot 10^{-3}$ for pebble radii between 1 mm and 6 mm. Taking into account other constraints, our results point towards a pebble makeup of the cometary sub-surface with pebble radii between 3 mm and 6 mm. The derived real part of the refractive index is used to constrain the composition of the pebbles and their volume filling factor. The optical and physical properties are discussed in the context of protoplanetary and debris disc observations.