论文标题
学习分子预测的正则位置编码
Learning Regularized Positional Encoding for Molecular Prediction
论文作者
论文摘要
机器学习已成为分子建模的一种有前途的方法。位置量(例如原子间距离和键角)在分子物理学中起着至关重要的作用。现有作品依靠其表示形式的精心设计。为了在更端到端的方法中预测分子特性时对复杂的非线性进行建模,我们建议用可学习的嵌入来编码位置量,该嵌入是连续且可区分的。采用正则化技术来鼓励沿物理维度嵌入光滑度。我们尝试各种分子特性和力场预测任务。插入提出的位置编码方法后,可以观察到三种不同模型体系结构的性能。此外,学到的位置编码可以更轻松地基于物理学的解释。我们观察到类似物理的任务具有相似的学习位置编码。
Machine learning has become a promising approach for molecular modeling. Positional quantities, such as interatomic distances and bond angles, play a crucial role in molecule physics. The existing works rely on careful manual design of their representation. To model the complex nonlinearity in predicting molecular properties in an more end-to-end approach, we propose to encode the positional quantities with a learnable embedding that is continuous and differentiable. A regularization technique is employed to encourage embedding smoothness along the physical dimension. We experiment with a variety of molecular property and force field prediction tasks. Improved performance is observed for three different model architectures after plugging in the proposed positional encoding method. In addition, the learned positional encoding allows easier physics-based interpretation. We observe that tasks of similar physics have the similar learned positional encoding.