论文标题

PANERF:基于少量输入的改进神经辐射场的伪视图增强

PANeRF: Pseudo-view Augmentation for Improved Neural Radiance Fields Based on Few-shot Inputs

论文作者

Ahn, Young Chun, Jang, Seokhwan, Park, Sungheon, Kim, Ji-Yeon, Kang, Nahyup

论文摘要

近年来已经开发了神经辐射场(NERF)的方法,这项技术有望综合复杂场景的新型观点。但是,NERF需要密集的输入视图,通常在数百个中编号,以生成高质量的图像。随着输入视图数量的减少,对于看不见的观点的NERF渲染质量往往会急剧退化。为了克服这一挑战,我们提出了NERF的伪视图增强,该方案通过考虑少量输入的几何形状来扩大足够数量的数据。我们首先通过利用扩展的伪视图来初始化NERF网络,从而在呈现看不见的视图时有效地最大程度地减少了不确定性。随后,我们通过利用包含精确几何和颜色信息的稀疏视图输入来微调网络。通过在各种设置下的实验,我们验证了我们的模型忠实地综合了卓越质量的新型视图图像,并且胜过了多视图数据集的现有方法。

The method of neural radiance fields (NeRF) has been developed in recent years, and this technology has promising applications for synthesizing novel views of complex scenes. However, NeRF requires dense input views, typically numbering in the hundreds, for generating high-quality images. With a decrease in the number of input views, the rendering quality of NeRF for unseen viewpoints tends to degenerate drastically. To overcome this challenge, we propose pseudo-view augmentation of NeRF, a scheme that expands a sufficient amount of data by considering the geometry of few-shot inputs. We first initialized the NeRF network by leveraging the expanded pseudo-views, which efficiently minimizes uncertainty when rendering unseen views. Subsequently, we fine-tuned the network by utilizing sparse-view inputs containing precise geometry and color information. Through experiments under various settings, we verified that our model faithfully synthesizes novel-view images of superior quality and outperforms existing methods for multi-view datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源