论文标题

无线传感数据收集和元化头像构造的处理

Wireless Sensing Data Collection and Processing for Metaverse Avatar Construction

论文作者

Wang, Jiacheng, Du, Hongyang, Yang, Xiaolong, Niyato, Dusit, Kang, Jiawen, Mao, Shiwen

论文摘要

人工智能和扩展现实等新兴技术的最新进展将Metaverse(虚拟,共享空间)推向了现实。在Metavers中,用户可以自定义虚拟化身以体验不同的生活。虽然令人印象深刻,但阿凡达(Avatar)的构建需要大量数据,从各个角度来看,在物理世界中表现出用户,而无线传感数据是其中之一。例如,机器学习(ML)和信号处理可以帮助从传感数据中提取有关用户行为的信息,从而促进Metaverse中的头像行为构建。本文介绍了一个无线传感数据集,以支持有关元化头像结构的新兴研究。严格地,首先分析现有的数据收集平台和数据集。在此基础上,我们介绍了本文中使用的平台,以及数据收集方法和方案。我们观察到收集的感应数据,即通道状态信息(CSI),患有相位移位问题,这会对用户信息(例如行为和心跳)的提取产生负面影响,并进一步恶化了头像结构。因此,我们建议分别通过滑动窗口和相位补偿来检测和纠正此相移,然后使用收集的数据验证所提出的方案。最后,从数据集的角度给出了与化身结构相关的几个研究方向。

Recent advances in emerging technologies such as artificial intelligence and extended reality have pushed the Metaverse, a virtual, shared space, into reality. In Metaverse, users can customize virtual avatars to experience a different life. While impressive, avatar construction requires a lot of data that manifest users in the physical world from various perspectives, and wireless sensing data is one of them. For example, machine learning (ML) and signal processing can help extract information about user behavior from sensing data, thereby facilitating avatar behavior construction in the Metaverse. This article presents a wireless sensing dataset to support the emerging research on Metaverse avatar construction. Rigorously, the existing data collection platforms and datasets are analyzed first. On this basis, we introduce the platform used in this paper, as well as the data collection method and scenario. We observe that the collected sensing data, i.e., channel state information (CSI), suffers from a phase shift problem, which negatively affects the extraction of user information such as behavior and heartbeat and further deteriorates the avatar construction. Therefore, we propose to detect and correct this phase shift by a sliding window and phase compensation, respectively, and then validate the proposed scheme with the collected data. Finally, several research directions related to the avatar construction are given from the perspective of datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源