论文标题

SCIAI4 Industry-解决PDE解决行业规模问题的深度学习问题

SciAI4Industry -- Solving PDEs for industry-scale problems with deep learning

论文作者

Witte, Philipp A., Hewett, Russell J., Saurabh, Kumar, Sojoodi, AmirHossein, Chandra, Ranveer

论文摘要

用深度学习求解部分微分方程,可以通过多个数量级减少模拟时间,并解锁通常依赖大量顺序模拟的科学方法,例如优化和不确定性定量。为工业问题设置采用科学AI的两个最大挑战是,必须事先模拟培训数据集,并且用于解决大规模PDE的神经网络超出了当前GPU的内存能力。我们在Julia语言中引入了分布式编程API,用于在云上并行模拟培训数据,而无需用户管理基础HPC基础架构。此外,我们表明,基于域分解的模型平行的深度学习使我们能够扩展神经网络以求解PDES到商业规模的问题设置,并达到超过90%的并行效率。将我们的云API结合起来,以培训数据生成和模型 - 平行的深度学习,我们训练大规模的神经网络,以求解3D Navier-Stokes方程并在多孔介质中模拟3D CO2流。在CO2示例中,我们基于商业碳捕获和存储(CCS)项目模拟训练数据集,并训练一个神经网络,用于在3D网格上使用超过200万个单元格的3D网格上的二氧化碳流量模拟,比传统的数值模拟器快5个幅度的幅度速度,幅度更快,更便宜。

Solving partial differential equations with deep learning makes it possible to reduce simulation times by multiple orders of magnitude and unlock scientific methods that typically rely on large numbers of sequential simulations, such as optimization and uncertainty quantification. Two of the largest challenges of adopting scientific AI for industrial problem settings is that training datasets must be simulated in advance and that neural networks for solving large-scale PDEs exceed the memory capabilities of current GPUs. We introduce a distributed programming API in the Julia language for simulating training data in parallel on the cloud and without requiring users to manage the underlying HPC infrastructure. In addition, we show that model-parallel deep learning based on domain decomposition allows us to scale neural networks for solving PDEs to commercial-scale problem settings and achieve above 90% parallel efficiency. Combining our cloud API for training data generation and model-parallel deep learning, we train large-scale neural networks for solving the 3D Navier-Stokes equation and simulating 3D CO2 flow in porous media. For the CO2 example, we simulate a training dataset based on a commercial carbon capture and storage (CCS) project and train a neural network for CO2 flow simulation on a 3D grid with over 2 million cells that is 5 orders of magnitudes faster than a conventional numerical simulator and 3,200 times cheaper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源