论文标题

评估心电图的特征归因方法

Evaluating Feature Attribution Methods for Electrocardiogram

论文作者

Suh, Jangwon, Kim, Jimyeong, Jung, Euna, Rhee, Wonjong

论文摘要

自引入深度学习模型以来,心律不齐(ECG)的心律失常检测的性能得到了很大改善。在实践中,仅高性能就不够,也需要适当的解释。最近,研究人员已经开始采用特征归因方法来满足这一要求,但是尚不清楚哪种方法适合ECG。在这项工作中,我们根据ECG的特征:本地化得分,指向游戏和退化分数来识别并自定义特征归因方法的三个评估指标。使用三个评估指标,我们评估和分析了11种广泛使用的特征归因方法。我们发现,某些特征归因方法更适合解释ECG,其中Grad-CAM的表现优于第二好的方法。

The performance of cardiac arrhythmia detection with electrocardiograms(ECGs) has been considerably improved since the introduction of deep learning models. In practice, the high performance alone is not sufficient and a proper explanation is also required. Recently, researchers have started adopting feature attribution methods to address this requirement, but it has been unclear which of the methods are appropriate for ECG. In this work, we identify and customize three evaluation metrics for feature attribution methods based on the characteristics of ECG: localization score, pointing game, and degradation score. Using the three evaluation metrics, we evaluate and analyze eleven widely-used feature attribution methods. We find that some of the feature attribution methods are much more adequate for explaining ECG, where Grad-CAM outperforms the second-best method by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源