论文标题
格林功能中的三重激发耦合群集求解器,用于在自我能源嵌入理论框架中的强相关系统的研究
Triple excitations in Green's function coupled cluster solver for studies of strongly correlated systems in the framework of self-energy embedding theory
论文作者
论文摘要
嵌入理论成为用于准确计算分子和固体的重要方法。在这些理论中,轨道的小子集用一种精确的方法(称为杂质求解器)处理,能够描述更高的相关效应。理想情况下,这种选择的片段应包含负责化合物化学和物理行为的多个轨道。大量选择的轨道给物理和化学界使用的当前求解器带来了非常重大的挑战。在这里,我们开发了绿色的函数耦合群集单打双打和三元组(GFCCSDT)求解器,该求解器可用于分子和固体中的定量描述。该求解器允许我们处理其他精确求解器无法访问的轨道空间。同时,GFCCSDT保持了由此产生的自我能源的高精度。此外,与GFCCSD求解器一起,它使我们能够测试计算研究的系统收敛性。开发CC求解器家族为完全系统的绿色功能嵌入固体中的功能铺平了道路。在本文中,我们专注于对GFCCSDT自我能力的调查,以解决Srmno $ _3 $ solid的紧密相关问题。随后,我们将该求解器应用于固体MNO,表明GFCCSDT的近似变体能够产生高精度轨道分辨的光谱函数。
Embedding theories became important approaches used for accurate calculations of both molecules and solids. In these theories, a small chosen subset of orbitals is treated with an accurate method, called an impurity solver, capable of describing higher correlation effects. Ideally, such a chosen fragment should contain multiple orbitals responsible for the chemical and physical behavior of the compound. Handing a large number of chosen orbitals presents a very significant challenge for the current generation of solvers used in the physics and chemistry community. Here, we develop a Green's function coupled cluster singles doubles and triples (GFCCSDT) solver that can be used for a quantitative description in both molecules and solids. This solver allows us to treat orbital spaces that are inaccessible to other accurate solvers. At the same time, GFCCSDT maintains high accuracy of the resulting self-energy. Moreover, in conjunction with the GFCCSD solver, it allows us to test the systematic convergence of computational studies. Developing the CC family of solvers paves the road to fully systematic Green's function embedding calculations in solids. In this paper, we focus on the investigation of GFCCSDT self-energies for a strongly correlated problem of SrMnO$_3$ solid. Subsequently, we apply this solver to solid MnO showing that an approximate variant of GFCCSDT is capable of yielding a high accuracy orbital resolved spectral function.