论文标题

自动回复:用歧视性答复在内省对话中检测到胡说八道

AutoReply: Detecting Nonsense in Dialogue Introspectively with Discriminative Replies

论文作者

Shi, Weiyan, Dinan, Emily, Renduchintala, Adi, Fried, Daniel, Jacob, Athul Paul, Yu, Zhou, Lewis, Mike

论文摘要

现有方法构建了单独的分类器,以检测对话中的废话。在本文中,我们表明,如果没有外部分类器,对话模型可以通过计算表明不良消息的答复的可能性来内省自己的信息中的错误。例如,如果代理商认为其合作伙伴可能对候选信息做出“我不明白”的回应,则该消息可能没有意义,因此应选择替代信息。我们从游戏外交的数据集上评估了我们的方法,该方法包含在游戏状态下富有基础的长时间对话,现有模型会造成许多错误。我们首先表明,手工制作的答复对于在外交等复杂的应用中检测废话可能是有效的。然后,我们设计自动设计的算法以自动搜索这种歧视性答复,并给定少量的带注释的对话示例。我们发现自动生成的答复胜过胜过手工的答复,并以精心调整的大型监督模型在标准杆上进行。结果还表明,一个没有大量计算开销的单一答复也可以很好地检测到对话胡说八道。

Existing approaches built separate classifiers to detect nonsense in dialogues. In this paper, we show that without external classifiers, dialogue models can detect errors in their own messages introspectively, by calculating the likelihood of replies that are indicative of poor messages. For example, if an agent believes its partner is likely to respond "I don't understand" to a candidate message, that message may not make sense, so an alternative message should be chosen. We evaluate our approach on a dataset from the game Diplomacy, which contains long dialogues richly grounded in the game state, on which existing models make many errors. We first show that hand-crafted replies can be effective for the task of detecting nonsense in applications as complex as Diplomacy. We then design AutoReply, an algorithm to search for such discriminative replies automatically, given a small number of annotated dialogue examples. We find that AutoReply-generated replies outperform handcrafted replies and perform on par with carefully fine-tuned large supervised models. Results also show that one single reply without much computation overheads can also detect dialogue nonsense reasonably well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源