论文标题

在网络上非线性随机步行中的图案形成和振荡

Pattern formation and oscillations in nonlinear random walks on networks

论文作者

Skardal, Per Sebastian

论文摘要

随机步行是一个重要的工具,用于探测网络的结构和动力学特性,并在网络上建模传输和扩散过程。但是,当个人的运动由更复杂的因素决定时,例如涉及复杂决策的场景时,经典随机步行的线性范式缺乏捕获动态丰富行为的能力。解决此问题的一种修改是允许过渡概率取决于当前的系统状态,从而导致非线性随机步行。虽然已证明所产生的非线性产生了一系列更复杂的动态,但出现的模式,尤其是在常规网络拓扑上,尚未探索且了解不足。在这里,我们在常规网络上研究非线性随机步行。我们为均匀状态提供了许多稳定性结果,其中随机步行者在整个网络中均匀分布,表征了其雅各比式的光谱特性,我们用来表征其分叉。这些光谱特性也可用于理解超出分叉超出分叉的模式,这些模式分别包括振荡的短波长度模式和局部结构,分别是负和正偏置的局部结构。我们还发现了分叉的阳性偏见的亚临界性,导致磁滞回路和多稳定性。

Random walks represent an important tool for probing the structural and dynamical properties of networks and modeling transport and diffusion processes on networks. However, when individuals' movement becomes dictated by more complicated factors, e.g., scenarios that involve complex decision making, the linear paradigm of classical random walks lack the ability to capture dynamically rich behaviors. One modification that addresses this issue is to allow transition probabilities to depend on the current system state, resulting in a nonlinear random walk. While the resulting nonlinearity has been shown to give rise to an array of more complex dynamics, the patterns that emerge, in particular on regular network topologies, remain unexplored and poorly understood. Here we study nonlinear random walks on regular networks. We present a number of stability results for the uniform state where random walkers are uniformly distributed throughout the network, characterizing the spectral properties of its Jacobian which we use to characterize its bifurcations. These spectral properties may also be used to understand the patterns that emerge beyond bifurcations, which consist of oscillating short wave-length patterns and localized structures for negative and positive bias, respectively. We also uncover a subcriticality in the bifurcation for positive bias, leading to a hysteresis loop and multistability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源