论文标题
免费:深度学习图表,具有特定于任务的拓扑结构和多维边缘功能
GRATIS: Deep Learning Graph Representation with Task-specific Topology and Multi-dimensional Edge Features
论文作者
论文摘要
图形对于表示各种类型的现实数据很强大。图形的拓扑(边缘的存在)和边缘特征决定了图中顶点之间的消息传递机制。尽管大多数现有方法仅手动定义单值边缘,以描述一对顶点之间的连通性或相关性,但特定于任务和关键的关系线索可能会被这种手动定义的拓扑和单值边缘特征忽略。在本文中,我们提出了第一个常规图表学习框架(称为免费),该框架可以通过任何任意输入的特定于任务拓扑和特定于任务的多维边缘特征来生成强大的图表表示。为了了解每个边缘的存在和多维功能,我们的框架都考虑了相应的顶点对及其全局上下文信息,从而使生成的图形表示能够具有针对不同下流任务的全球最佳消息传递机制。在11个图和非图形数据集上针对各种图形分析任务实现的原则调查结果表明,我们的免费措施不仅可以在很大程度上增强预定义的图形,而且还可以学习对非图形数据的强大图表,并且对所有任务进行了明确的性能改进。特别是,学到的拓扑和多维边缘特征为图形分析任务提供了互补的任务相关线索。我们的框架是有效,健壮和灵活的,并且是一个可以与不同的骨干和图形神经网络(GNN)结合使用的插件模块,可以从各种图形和非图形数据中生成特定于任务的图形表示。我们的代码可在https://github.com/ssysteve/learning-graph-presentation-with-task-task-pexific-topology-and-multi-dimensional-dimensional-dege-features上公开获得。
Graph is powerful for representing various types of real-world data. The topology (edges' presence) and edges' features of a graph decides the message passing mechanism among vertices within the graph. While most existing approaches only manually define a single-value edge to describe the connectivity or strength of association between a pair of vertices, task-specific and crucial relationship cues may be disregarded by such manually defined topology and single-value edge features. In this paper, we propose the first general graph representation learning framework (called GRATIS) which can generate a strong graph representation with a task-specific topology and task-specific multi-dimensional edge features from any arbitrary input. To learn each edge's presence and multi-dimensional feature, our framework takes both of the corresponding vertices pair and their global contextual information into consideration, enabling the generated graph representation to have a globally optimal message passing mechanism for different down-stream tasks. The principled investigation results achieved for various graph analysis tasks on 11 graph and non-graph datasets show that our GRATIS can not only largely enhance pre-defined graphs but also learns a strong graph representation for non-graph data, with clear performance improvements on all tasks. In particular, the learned topology and multi-dimensional edge features provide complementary task-related cues for graph analysis tasks. Our framework is effective, robust and flexible, and is a plug-and-play module that can be combined with different backbones and Graph Neural Networks (GNNs) to generate a task-specific graph representation from various graph and non-graph data. Our code is made publicly available at https://github.com/SSYSteve/Learning-Graph-Representation-with-Task-specific-Topology-and-Multi-dimensional-Edge-Features.