论文标题
eRdős-graham-granville-selfridge的一个问题,在非椭圆曲线上不可或缺的积分上
A problem of Erdős-Graham-Granville-Selfridge on integral points on hyperelliptic curves
论文作者
论文摘要
对于每个正整数$ n $,考虑到$ t_n $的最小值,因此erdős,graham和selfridge考虑了整数$ n+1,n+2,\ dots,n+t_n $包含一个子集,其成员的$ n $的产品是正方形。在ABC猜想的假设下,格兰维尔提出的一个开放问题涉及$ t_n $的大小。我们建立了一些关于$ t_n $的分布的结果,在此过程中,我们无条件地解决了格兰维尔的问题。
Erdős, Graham, and Selfridge considered, for each positive integer $n$, the least value of $t_n$ so that the integers $n+1, n+2, \dots, n+t_n $ contain a subset the product of whose members with $n$ is a square. An open problem posed by Granville concerns the size of $t_n$, under the assumption of the ABC Conjecture. We establish some results on the distribution of $t_n$, and in the process solve Granville's problem unconditionally.