论文标题

使用转移学习和图形神经网络的通用机器学习框架

A generalized machine learning framework for brittle crack problems using transfer learning and graph neural networks

论文作者

Perera, Roberto, Agrawal, Vinamra

论文摘要

尽管他们最近取得了成功,但机器学习(ML)模型(例如图形神经网络(GNN))却遭受了诸如对大型培训数据集的需求和对看不见的情况的绩效差的缺点。在这项工作中,我们使用转移学习(TL)方法来规避使用大型数据集进行重新培训的需求。我们将TL应用于现有的ML框架,经过训练,可以预测Mode-I负载下脆性材料中的多个裂纹传播和应力演化。通过使用一系列TL更新步骤,包括(i)任意裂纹长度,(ii)任意裂纹方向,(iii)正方形域,(iv)水平域和(v)剪切载荷,新的框架加速了通用断裂模拟器(准确),将其推广到各种裂纹问题。我们表明,对于每个TL更新步骤,使用20个模拟的小型培训数据集,准确地实现了模式I和模式II压力强度因子的高预测准确性,以及这些问题的破解路径。案例研究%(i) - (iv)。我们证明了准确的能力,可以在不可见期的情况下以高精度预测裂纹生长和应力演变,涉及新的边界维度与拉伸和剪切负荷的任意裂纹长度和裂纹方向的组合。与基于XFEM的断裂模型相比,我们还显示出高达2个数量级的模拟时间(200倍)的显着加速模拟时间。准确的框架提供了一个通用的计算断裂力学模型,可以在未来的工作中轻松修改或扩展。

Despite their recent success, machine learning (ML) models such as graph neural networks (GNNs), suffer from drawbacks such as the need for large training datasets and poor performance for unseen cases. In this work, we use transfer learning (TL) approaches to circumvent the need for retraining with large datasets. We apply TL to an existing ML framework, trained to predict multiple crack propagation and stress evolution in brittle materials under Mode-I loading. The new framework, ACCelerated Universal fRAcTure Emulator (ACCURATE), is generalized to a variety of crack problems by using a sequence of TL update steps including (i) arbitrary crack lengths, (ii) arbitrary crack orientations, (iii) square domains, (iv) horizontal domains, and (v) shear loadings. We show that using small training datasets of 20 simulations for each TL update step, ACCURATE achieved high prediction accuracy in Mode-I and Mode-II stress intensity factors, and crack paths for these problems. %case studies (i) - (iv). We demonstrate ACCURATE's ability to predict crack growth and stress evolution with high accuracy for unseen cases involving the combination of new boundary dimensions with arbitrary crack lengths and crack orientations in both tensile and shear loading. We also demonstrate significantly accelerated simulation times of up to 2 orders of magnitude faster (200x) compared to an XFEM-based fracture model. The ACCURATE framework provides a universal computational fracture mechanics model that can be easily modified or extended in future work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源