论文标题

ISIM:迭代性自我改进的模型,用于弱监督分段

ISIM: Iterative Self-Improved Model for Weakly Supervised Segmentation

论文作者

Bircanoglu, Cenk, Arica, Nafiz

论文摘要

弱监督的语义细分(WSSS)是一项具有挑战性的任务,旨在从班级标签中学习细分标签。在文献中,利用从类激活图(CAM)获得的信息广泛用于WSSS研究。但是,由于CAM是从分类网络获得的,因此它们对对象的最歧视部分感兴趣,从而为分割任务产生了不完整的先验信息。在这项研究中,为了获得与分割标签的更连贯的凸轮,我们提出了一个框架,该框架在基于修改的编码器基于修饰的分割模型中采用迭代方法,同时支持分类和分割任务。由于没有给出地面真相分割标签,因此相同的模型还借助密集的条件随机场(DCRF)生成伪分段标签。结果,提出的框架成为了迭代的自我改进模型。使用DEEPLABV3和UNET模型执行的实验在Pascal VOC12数据集上显示出显着的增长,而DeepLabV3应用程序将当前的最新指标提高了%2.5。可以找到与实验相关的实现:https://github.com/cenkbircanoglu/isim。

Weakly Supervised Semantic Segmentation (WSSS) is a challenging task aiming to learn the segmentation labels from class-level labels. In the literature, exploiting the information obtained from Class Activation Maps (CAMs) is widely used for WSSS studies. However, as CAMs are obtained from a classification network, they are interested in the most discriminative parts of the objects, producing non-complete prior information for segmentation tasks. In this study, to obtain more coherent CAMs with segmentation labels, we propose a framework that employs an iterative approach in a modified encoder-decoder-based segmentation model, which simultaneously supports classification and segmentation tasks. As no ground-truth segmentation labels are given, the same model also generates the pseudo-segmentation labels with the help of dense Conditional Random Fields (dCRF). As a result, the proposed framework becomes an iterative self-improved model. The experiments performed with DeepLabv3 and UNet models show a significant gain on the Pascal VOC12 dataset, and the DeepLabv3 application increases the current state-of-the-art metric by %2.5. The implementation associated with the experiments can be found: https://github.com/cenkbircanoglu/isim.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源